Effects of incubation temperature on growth and production of exopolysaccharides by an antarctic sea ice bacterium grown in batch culture.
نویسندگان
چکیده
The sea ice microbial community plays a key role in the productivity of the Southern Ocean. Exopolysaccharide (EPS) is a major component of the exopolymer secreted by many marine bacteria to enhance survival and is abundant in sea ice brine channels, but little is known about its function there. This study investigated the effects of temperature on EPS production in batch culture by CAM025, a marine bacterium isolated from sea ice sampled from the Southern Ocean. Previous studies have shown that CAM025 is a member of the genus Pseudoalteromonas and therefore belongs to a group found to be abundant in sea ice by culture-dependent and -independent techniques. Batch cultures were grown at -2 degrees C, 10 degrees C, and 20 degrees C, and cell number, optical density, pH, glucose concentration, and viscosity were monitored. The yield of EPS at -2 degrees C and 10 degrees C was 30 times higher than at 20 degrees C, which is the optimum growth temperature for many psychrotolerant strains. EPS may have a cryoprotective role in brine channels of sea ice, where extremes of high salinity and low temperature impose pressures on microbial growth and survival. The EPS produced at -2 degrees C and 10 degrees C had a higher uronic acid content than that produced at 20 degrees C. The availability of iron as a trace metal is of critical importance in the Southern Ocean, where it is known to limit primary production. EPS from strain CAM025 is polyanionic and may bind dissolved cations such at trace metals, and therefore the presence of bacterial EPS in the Antarctic marine environment may have important ecological implications.
منابع مشابه
Production of exopolysaccharides by Antarctic marine bacterial isolates.
AIMS This study was undertaken to examine and characterize Antarctic marine bacterial isolates and the exopolysaccharides (EPS) they produce in laboratory culture. METHODS AND RESULTS Two EPS-producing bacterial strains CAM025 and CAM036 were isolated from particulate material sampled from seawater and sea ice in the southern ocean. Analyses of 16S rDNA sequences placed these isolates in the ...
متن کاملEffect of Organic Substrate on Promoting Solventogenesis in Ethanologenic Acetogene Clostridium ljungdahlii ATCC5538
Clostridium ljungdahlii is a strictly anaerobic acetogene known for its ability to ferment a wide variety of substrates to ethanol and acetate. This bacterium presents a complex anaerobic metabolism including the acetogenic and solventogenic phases. In this study, the effect of various carbon sources on triggering the metabolic shift toward solventogenesis was considered. The bacterium was grow...
متن کاملOne-Factor-at-a-Time Optimization of Polyhydroxybutyrate Production and Growth of Alcaligenes eutrophus by Altering Culture Parameters and Incubation Time
Polyhydroxyalkanoates (PHAs) are bioplastics derived from renewable resources such as vegetable oils, corn starch, or microbes. The polyhydroxybutyrate (PHB) is a short-chain-length PHA, and the most important bioplastic produced by certain microorganisms in the presence of excess carbon sources. In this study batch cultivation of Alcaligenes eutrophus with the aim of increasing PHB production ...
متن کاملExopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions.
During the stationary phase of a batch culture of the epipelic diatom Cylindrotheca closterium, accumulation of exopolysaccharides and intracellular carbohydrates was observed. When nitrogen was added to the culture in the stationary phase, growth was resumed and the accumulation of exopolysaccharides was delayed. This indicated that nitrogen depletion caused cessation of growth, and stimulated...
متن کاملComputational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation.
Antarctic bacterium antifreeze proteins (AFPs) protect and support the survival of cold-adapted organisms by binding and inhibiting the growth of ice crystals. The mechanism of the anti-freezing process in a water environment at low temperature of Antarctic bacterium AFPs remains unclear. In this research, we study the effects of Antarctic bacterium AFPs by coarse grained simulations solution a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 7 شماره
صفحات -
تاریخ انتشار 2005